PSEUDO ALGEBRAICALLY CLOSED FIELDS OVER RINGSbyMoshe

نویسنده

  • Moshe Jarden
چکیده

We prove that for almost all 2 G(Q) e the eld ~ Q() has the following property: For each absolutely irreducible aane variety V of dimension r and each dominating separable rational map ': V ! A r there exists a point a 2 V (~ Q()) such that '(a) 2 Z r. We then say that ~ Q() is PAC over Z. This is a stronger property then being PAC. Indeed we show that beside the elds ~ Q() other elds which are algebraic over Q and are known in the literature to be PAC are not PAC over Z.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifier Elimination following Muchnik

This paper describes a very simple (high school level) algorithm of quantifier elimination for real closed fields and algebraically closed fields following an idea of A. Muchnik. The algorithm essentially relies on intermediate value property, pseudo-euclidean division and sign change table for univariate polynomials over R. Surprisingly this algorithm exhibits some more general feature and it ...

متن کامل

On PAC and bounded substructures of a stable structure

We introduce and study the notions of a PAC substructure of a stable structure, and a bounded substructure of an arbitrary substructure, generalizing [8]. We give precise definitions and equivalences, saying what it means for properties such as PAC to be first order, study some examples (such as differentially closed fields) in detail, relate the material to generic automorphisms, and generaliz...

متن کامل

A Conjecture of Ax and Degenerations of Fano Varieties

A field k is called C1 if every homogeneous form f(x0, . . . , xn) ∈ k[x0, . . . , xn] of degree ≤ n has a nontrivial zero. Examples of C1 fields are finite fields (Chevalley) and function fields of curves over an algebraically closed field (Tsen). A field is called PAC (pseudo algebraically closed) if every geometrically integral k-variety has a k-point. An k-variety X is called geometrically ...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

On Pseudo Algebraically Closed Extensions of Fields

The notion of ‘Pseudo Algebraically Closed (PAC) extensions’ is a generalization of the classical notion of PAC fields. In this work we develop a basic machinery to study PAC extensions. This machinery is based on a generalization of embedding problems to field extensions. The main goal is to prove that the Galois closure of any proper separable algebraic PAC extension is its separable closure....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994